Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.685
Filtrar
1.
Aging Male ; 27(1): 2336627, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38567396

RESUMO

Penile erection (PE) is a hemodynamic event that results from a neuroendocrine process, and it is influenced by the cardiovascular status of the patient. However, it may also modulate an individual's cardiovascular events. The present study provides the mechanisms involved in the association of PE and cardiovascular function. Erection upsurges the cardiac rate, blood pressure, and oxygen uptake. Sex-enhancing strategies, such as phosphodiesterase inhibitors, alprostadil, and testosterone also promote vasodilatation and cardiac performance, thus preventing myocardial infarction. More so, drugs that are used in the treatment of hypertensive heart diseases (such as angiotensin system inhibitors and ß-blockers) facilitate vasodilatation and PE. These associations have been linked with nitric oxide- and testosterone-dependent enhancing effects on the vascular endothelium. In addition, impaired cardiovascular function may negatively impact PE; therefore, impaired PE may be a pointer to cardiovascular pathology. Hence, evaluation of the cardiovascular status of an individual with erectile dysfunction (ED) is essential. Also, employing strategies that are used in maintaining optimal cardiac function may be useful in the management of ED.


Assuntos
Disfunção Erétil , Hipertensão , Masculino , Humanos , Ereção Peniana/fisiologia , Óxido Nítrico/farmacologia , Óxido Nítrico/fisiologia , Óxido Nítrico/uso terapêutico , Testosterona/uso terapêutico , Testosterona/farmacologia
2.
Viral Immunol ; 37(3): 139-148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574260

RESUMO

Goose astrovirus type 2 (GAstV-2) is a novel pathogen causing visceral gout in goslings; it not only causes necrosis of renal epithelial cells but also causes spleen damage, indicating that GAstV-2 induces immunosuppression in goslings. However, to date, the interaction between GAstV-2 and immune cells remains unclear. In this study, peripheral blood lymphocytes and macrophages were isolated from goslings without GAstV-2 infection and then inoculated in vitro with GAstV-2, and the virus localization in the lymphocytes and macrophages, proliferation and apoptosis of lymphocytes, and phagocytic activity, reactive oxygen species (ROS) and nitric oxide (NO) production, and cell polarity in macrophages were determined. The results showed that GAstV-2 was observed in the cytoplasm of CD4 and CD8 T cells and macrophages, indicating that GAstV-2 can infect both lymphocytes and macrophages. GAstV-2 infection reduced the lymphocyte proliferation induced by Concanavalin A and lipopolysaccharide stimulation and increased the lymphocyte apoptosis rate and mRNA expression of Fas, demonstrating that GAstV-2 causes damage to lymphocytes. Moreover, GAstV-2 infection enhanced phagocytic activity and production of ROS and NO and induced a proinflammatory phenotype in macrophages (M1 macrophages), indicating that macrophages play an antiviral role during GAstV-2 infection. In conclusion, these results demonstrate that GAstV-2 infection causes damages to lymphocytes, and host macrophages inhibit GAstV-2 invasion during infection.


Assuntos
Infecções por Astroviridae , Gansos , Animais , Humanos , Gansos/metabolismo , Espécies Reativas de Oxigênio , Linfócitos/metabolismo , Macrófagos , Infecções por Astroviridae/veterinária , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia
3.
Physiol Rep ; 12(8): e16021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639714

RESUMO

We assessed the combined effect of superoxide and iNOS inhibition on microvascular function in non-Hispanic Black and non-Hispanic White participants (n = 15 per group). Participants were instrumented with four microdialysis fibers: (1) lactated Ringer's (control), (2) 10 µM tempol (superoxide inhibition), (3) 0.1 mM 1400 W (iNOS inhibition), (4) tempol + 1400 W. Cutaneous vasodilation was induced via local heating and NO-dependent vasodilation was quantified. At control sites, NO-dependent vasodilation was lower in non-Hispanic Black (45 ± 9% NO) relative to non-Hispanic White (79 ± 9% NO; p < 0.01; effect size, d = 3.78) participants. Tempol (62 ± 16% NO), 1400 W (78 ± 12% NO) and tempol +1400 W (80 ± 13% NO) increased NO-dependent vasodilation in non-Hispanic Black participants relative to control sites (all p < 0.01; d = 1.22, 3.05, 3.03, respectively). The effect of 1400 W (p = 0.04, d = 1.11) and tempol +1400 W (p = 0.03, d = 1.22) was greater than tempol in non-Hispanic Black participants. There was no difference between non-Hispanic Black and non-Hispanic White participants at 1400 W or tempol + 1400 W sites. These data suggest iNOS has a greater effect on NO-dependent vasodilation than superoxide in non-Hispanic Black participants.


Assuntos
Óxidos N-Cíclicos , Iminas , Óxido Nítrico , Marcadores de Spin , Vasodilatação , Humanos , Adulto Jovem , Óxido Nítrico/farmacologia , Vasodilatação/fisiologia , Superóxidos , Pele/irrigação sanguínea , Fluxo Sanguíneo Regional
4.
Open Vet J ; 14(1): 341-349, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633167

RESUMO

Background: The prevalence of avian coccidiosis in the poultry industry has grown, resulting in substantial financial losses from high mortality, stunted growth, reduced productivity, and expensive medical expenses. Aim: The purpose of the current study was to assess the immunological effects of neem leaf extract and toltrazuril on broilers that had contracted coccidiosis. Methods: In this investigation, 100 one-day-old Cobb broiler chicks without sexes were employed. The chicks were divided into five equal groups, with 20 birds in each. On the 14th day of life, the birds in groups 2, 3, 4, and 5 received an oral inoculation with 1 × 105 sporulated oocysts of Eimeria tenella (E. tenella) (field isolate). The first group (Gp), which consists of 20 healthy broilers, served as a negative control. Gp (2) contains experimentally infected broilers and nontreated (served as a positive control). Gp (3) contains experimentally infected broilers treated with toltrazuril (1 ml/l drinking water) for two consecutive days. Gp (4) contains experimentally infected broilers treated with neem leaf extract 4% (50 ml/l drinking water) for 5 successive days, and Gp (5) contains experimentally infected broilers treated with toltrazuril (1 ml/l drinking water) and a half dose of neem leaves extract 4% (25 ml/l drinking water) for 5 successive days. For the purpose of estimating body weight growth and feed conversion ratio, each broiler was weighed separately at the start of the trial and again on the 1st and 10th day after treatment. In addition to obtaining intestinal samples for immunohistochemistry, blood samples were also obtained for immunological examination. Results: As compared to the negative control group, the experimentally infested broilers with E. tenella showed significant decreases in serum nitric oxide, lysosome, phagocytic percent, and phagocytic index, along with significant increases in white blood cells (WBCs), lymphocyte, heterophilis, eosinophilis, basophilis, monocyte, serum total protein, γ globulin, fibrinogen, and haptoglobin. When compared to the control positive group, experimentally infested broilers treated with either neem or toltrazuril alone or in combination demonstrated significant increases in serum total protein, nitric oxide, lysozyme, phagocytic percent, and phagocytic index, but significant decreases in WBCs, lymphocytes, heterophile, eosinophile, basophile, and monocyte. The intestinal peroxidase stain of broilers infected with E. tenella exhibited a significant positive expression for CD4, but the infected broilers treated with toltrazuril and half a dosage of neem displayed a negative expression for CD4, identical to the negative control. Conclusion: The broiler chickens infested with E. tenella may have a variety of negative impacts on their immune systems and immunohistopathological findings. Nonetheless, toltrazuril and neem extract, either separately or in combination, function as anticoccidial medications that may enhance the broiler chicks' immune state.


Assuntos
Coccidiose , Coccidiostáticos , Água Potável , Eimeria tenella , Triazinas , Animais , Galinhas , Coccidiostáticos/farmacologia , Coccidiostáticos/uso terapêutico , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Coccidiose/tratamento farmacológico , Coccidiose/patologia , Coccidiose/veterinária , Extratos Vegetais/farmacologia
5.
Biomaterials ; 307: 122532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493670

RESUMO

The poor efficiency of US-responsive coatings on implants restricts their practical application. Immunotherapy that stimulates immune cells to enhance their antibacterial activity is expected to synergize with sonodynamic therapy for treating implant infection effectively and safely. Herein, US-responsive hybrid coatings composed of the oxygen-deficient BaTiO3 nanorod arrays and l-arginine (BaTiO3-x/LA) are designed and prepared on titanium implants for sonocatalytic therapy-cooperated immunotherapy to treat Methicillin-resistant Staphylococcus aureus (MRSA) infection. BaTiO3-x/LA can generate more oxidizing reactive oxygen species (ROS, hydroxyl radical (·OH)) and reactive nitrogen species (RNS, peroxynitrite anion (ONOO-)). The construction of nanorod arrays and oxygen defects balances the piezoelectric properties and sonocatalytic capability during US treatment. The generated piezoelectric electric field provides a sufficient driving force to separate electrons and holes, and the oxygen defects attenuate the electron-hole recombination efficiency, consequently increasing the yield of ROS during the US treatment. Moreover, nitric oxide (NO) released by l-arginine reacts with the superoxide radical (·O2-) to produce ONOO-. Since, this radical chain reaction improves the oxidizing ability between bacteria and radicals, the cell membrane (argB, secA2) and DNA (dnaBGXN) are destroyed. The bacterial self-repair mechanism indirectly accelerates bacterial death based on the transcriptome analysis. In addition to participating in the radical chain reaction, NO positively affects macrophage M1 polarization to yield potent phagocytosis to MRSA. As a result, without introducing an extra sonosensitizer, BaTiO3-x/LA exhibits excellent antibacterial activity against MRSA after the US treatment for 15 min. Furthermore, BaTiO3-x/LA facilitates macrophage M2 polarization after implantation and improves osteogenic differentiation. The combined effects of sonodynamic therapy and immunoregulation lead to an effective and safe treatment method for implant-associated infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Espécies Reativas de Oxigênio/metabolismo , Osteogênese , Antibacterianos/farmacologia , Óxido Nítrico/farmacologia , Oxigênio/farmacologia , Arginina
6.
Am J Reprod Immunol ; 91(3): e13833, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467595

RESUMO

BACKGROUND: Endometritis is an inflammatory reaction of the lining of uterus, leading to the occurrence of infertility. Platelet rich plasma (PRP) has been proven to exhibit extremely effective for the treatment of endometrium-associated infertility, but the mechanism of its prevention for endometritis remains unclear. OBJECTIVE: The present study aimed to investigate the protective effect of PRP against endometritis induced by lipopolysaccharide (LPS) and elucidate the mechanism underlying these effects. METHODS: Mouse model of endometritis was established by intrauterine perfusion of LPS. PRP intrauterine infusion was administered at 24 h after LPS induction. After another 24 h, the uterine tissues were harvested to observe histopathological changes, production of proinflammatory cytokines, variation of the Toll-like receptor 4/nuclear factor κB (TLR4/NF-κB) signaling pathways, and validated the anti-inflammatory effect of PRP. The myeloperoxidase (MPO) activity and concentration of nitric oxide (NO) were determined using assay kit. Proinflammatory chemokines (tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6)) were measured by ELISA and Real-Time PCR. The activity of TLR4/NF-κB pathway in uterine tissues was measured by Western blotting. RESULTS: Hematoxylin-eosin staining (H&E) appeared that PRP remarkably relieved the impairment of uterine tissues. Detection of MPO activity and concentration of NO revealed that PRP treatment distinctly mitigated infiltration of inflammatory cells in mice with endometritis induced by LPS. PRP treatment significantly affected the expression of TNF-α, IL-1ß, and IL-6. PRP was also found to suppress LPS-induced activation of TLR4/NF-κB pathway. CONCLUSION: PRP effectively alleviates LPS-induced endometritis via restraining the signal pathway of TLR4/NF-κB. These findings provide a solid foundation for PRP as a potential therapeutic agent for endometritis.


Assuntos
Endometrite , Infertilidade , Plasma Rico em Plaquetas , Humanos , Feminino , Animais , Camundongos , NF-kappa B/metabolismo , Endometrite/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6 , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Interleucina-1beta/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Plasma Rico em Plaquetas/metabolismo
7.
Cell Commun Signal ; 22(1): 138, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374138

RESUMO

BACKGROUND: Applications of nonthermal plasma have expanded beyond the biomedical field to include antibacterial, anti-inflammatory, wound healing, and tissue regeneration. Plasma enhances epithelial cell repair; however, the potential damage to deep tissues and vascular structures remains under investigation. RESULT: This study assessed whether liquid plasma (LP) increased nitric oxide (NO) production in human umbilical vein endothelial cells by modulating endothelial NO synthase (eNOS) phosphorylation and potential signaling pathways. First, we developed a liquid plasma product and confirmed the angiogenic effect of LP using the Matrigel plug assay. We found that the NO content increased in plasma-treated water. NO in plasma-treated water promoted cell migration and angiogenesis in scratch and tube formation assays via vascular endothelial growth factor mRNA expression. In addition to endothelial cell proliferation and migration, LP influenced extracellular matrix metabolism and matrix metalloproteinase activity. These effects were abolished by treatment with NG-L-monomethyl arginine, a specific inhibitor of NO synthase. Furthermore, we investigated the signaling pathways mediating the phosphorylation and activation of eNOS in LP-treated cells and the role of LKB1-adenosine monophosphate-activated protein kinase in signaling. Downregulation of adenosine monophosphate-activated protein kinase by siRNA partially inhibited LP-induced eNOS phosphorylation, angiogenesis, and migration. CONCLUSION: The present study suggests that LP treatment may be a novel strategy for promoting angiogenesis in vascular damage. Video Abstract.


Assuntos
Matriz Extracelular , Óxido Nítrico Sintase Tipo III , Plasma , Lesões do Sistema Vascular , Humanos , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , 60489 , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/farmacologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/terapia , Plasma/metabolismo
8.
Molecules ; 29(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338372

RESUMO

The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO• donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.


Assuntos
Benzamidas , Disfunção Cognitiva , Maleato de Dizocilpina , Compostos Nitrosos , Pirazóis , Piridinas , Sulfonamidas , Camundongos , Animais , Maleato de Dizocilpina/farmacologia , Óxido Nítrico/farmacologia , Escopolamina/farmacologia , Óxido Nítrico Sintase Tipo III , Disfunção Cognitiva/tratamento farmacológico , Encéfalo , Regulação Alostérica
9.
Environ Sci Pollut Res Int ; 31(6): 9844-9856, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200196

RESUMO

Wheat (Triticum aestivum L.) is among the plants that are at risk from cadmium (Cd), a hazardous heavy metal that can be fatal due to its rapid absorption and high mobility. Being taken up from the soil and moving to the shoots and roots of edible plants, it enters the food chain and poses a health concern to people worldwide. A strategically important cereal crop, wheat has a demonstrated role in human health systems, particularly in poor nations. In this study, we describe the effects of nitric oxide (NO) on the growth, nutrition, and physiological functions of commercially cultivated wheat cvs. Galaxy 2013 and Akbar 2019 under Cd stress. Four-week-old plants were subjected to Cd (0.5 mM) stress, and after 2 weeks of Cd toxicity, foliar application of nitric oxide (100 and 150 µM) was carried out. As evident from excessive antioxidant production, Cd toxicity increased reactive oxygen species (ROS) level like H2O2 and significantly (p ≤ 0.001) decreased nutrient acquisition, growth, and yield attributes of plants under experiment. The severity of the effect varied between cultivars under investigation. A minimum accumulation of MDA (44%) and H2O2 (55%) was found in the cv. Akbar 2019 under Cd stress, whilst cv. Galaxy 2013 showed the highest accumulation of the oxidative stress indicators malondialdehyde content (MDA) (48%) and H2O2 (60%). Reduced and oxidized glutathione contents were also increased under Cd-induced toxicity. The application of NO resulted in a significant improvement of 22, 25, 25, and 30% in shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight, respectively. Additionally, there was an increased uptake of Ca+2 (16%), K+1 (5%), chlorophyll a (46%), b (32%), a/b ratio (41%), and carotenoid (28%). When compared with Cd-stressed plants, yield parameters like 100 grain weight, number of tillers plant-1, and grain yield plant-1 improved by 14, 17, and 33%, respectively, under NO application. We concluded from the results of this study that NO treatments increased plant development by lowering oxidative stress and limiting Cd uptake. It is inferred from the results of this study that wheat production with reduced heavy metal uptake may be facilitated using NO due to its cytoprotective properties and its interaction with ROS.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cádmio/análise , Antioxidantes/farmacologia , Triticum , Óxido Nítrico/farmacologia , Clorofila A , Espécies Reativas de Oxigênio/farmacologia , Peróxido de Hidrogênio/farmacologia , Metais Pesados/farmacologia , Solo , Minerais , Grão Comestível/química , Poluentes do Solo/análise
10.
Environ Sci Technol ; 58(4): 1823-1831, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235527

RESUMO

Air pollution causes morbidity and excess mortality. In the epithelial lining fluid of the respiratory tract, air pollutants trigger a chemical reaction sequence that causes the formation of noxious hydroxyl radicals that drive oxidative stress. For hitherto unknown reasons, individuals with pre-existing inflammatory disorders are particularly susceptible to air pollution. Through detailed multiphase chemical kinetic analysis, we show that the commonly elevated concentrations of endogenous nitric oxide in diseased individuals can increase the production of hydroxyl radicals via peroxynitrite formation. Our findings offer a molecular rationale of how adverse health effects and oxidative stress caused by air pollutants may be exacerbated by inflammatory disorders.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Óxido Nítrico/análise , Óxido Nítrico/farmacologia , Material Particulado/análise , Cinética , Estresse Oxidativo , Poluição do Ar/análise , Radical Hidroxila/análise , Radical Hidroxila/farmacologia
11.
Biomaterials ; 306: 122474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38271788

RESUMO

Repolarizing the tumor-associated macrophages (TAMs) towards the antitumoral M1-like phenotype has been a promising approach for cancer immunotherapy. However, the anti-cancer immune response is severely limited mainly by the repolarized M1-like macrophages belatedly returning to the M2-like phenotype (i.e., negative feedback). Inspired by nitric oxide (NO) effectively preventing repolarization of inflammatory macrophages in inflammatory diseases, herein, we develop an arginine assembly, as NO nano-donor for NO generation to prevent the negative feedback of the macrophage repolarization. The strategy is to first apply reversible tagging of hydrophobic terephthalaldehyde to create an arginine nano-assembly, and then load a toll-like receptor 7/8 agonist resiquimod (R848) (R848@Arg). Through this strategy, a high loading efficiency of 40 % for the arginine and repolarization characteristics for TAMs can be achieved. Upon the macrophage repolarization by R848, NO can be intracellularly generated from the released arginine by the upregulated inducible nitric oxide synthase. Mechanistically, NO effectively prevented the negative feedback of the repolarized macrophage by mitochondrial dysfunction via blocking oxidative phosphorylation. Notably, R848@Arg significantly increased the tumor inhibition ratio by 3.13-fold as compared to the free R848 by maintaining the M1-like phenotype infiltrating into tumor. The Arg-assembly as NO nano-donor provides a promising method for effective repolarization of macrophages.


Assuntos
Doenças Mitocondriais , Neoplasias , Humanos , Doadores de Óxido Nítrico , Retroalimentação , Macrófagos , Neoplasias/patologia , Adjuvantes Imunológicos/farmacologia , Óxido Nítrico/farmacologia , Imunoterapia/métodos , Doenças Mitocondriais/patologia , Microambiente Tumoral
12.
Langmuir ; 40(2): 1286-1294, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38171006

RESUMO

Nitric oxide (NO)-releasing coating is promising to enhance the biocompatibility of medical devices. In this study, polyurethane (PU) and S-nitrosated keratin (KSNO) were dissolved with dimethyl sulfoxide (DMSO) and tetrahydrofuran (THF) to prepare a coating solution. This solution is facile to form a porous coating on various substrates based on solvent-evaporation-induced phase separation (SEIPS). The coating could continuously release NO up to 200 h in the presence of ascorbic acid (Asc). In addition, the coating could accelerate endothelialization by promoting the viability of human umbilical vein endothelial cells (HUVECs) while inhibiting the proliferation of human umbilical artery smooth muscle cells (HUASMCs). Furthermore, the coating had good antibacterial activity and blood compatibility. Taken together, this universal coating provides wider potential applications in the field of cardiovascular implants.


Assuntos
Antibacterianos , Óxido Nítrico , Humanos , Óxido Nítrico/farmacologia , Porosidade , Células Endoteliais da Veia Umbilical Humana , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia
13.
J Mater Chem B ; 12(6): 1538-1549, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38251728

RESUMO

Although wound healing is a normal physiological process in the human body, it is often impaired by bacterial infections, ischemia, hypoxia, and excess inflammation, which can lead to chronic and non-healing wounds. Recently, injectable hydrogels with controlled nitric oxide (NO) release behaviour have become potential wound healing therapeutic agents due to their excellent biochemical, mechanical, and biological properties. Here, we proposed novel multifunctional NO-releasing hydrogels that could regulate various wound healing processes, including hemostasis, inflammation, cell proliferation and angiogenesis. By incorporating the copper nanoparticles (NPs) in the network of dual enzymatically crosslinked gelatin hydrogels (GH/Cu), NO was in situ produced via the Cu-catalyzed decomposition of endogenous RSNOs available in the blood, thus resolving the intrinsic shortcomings of NO therapies, such as the short storage and release time, as well as the burst and uncontrollable release modes. We demonstrated that the NO-releasing gelatin hydrogels enhanced the proliferation and migration of endothelial cells, while promoting the M2 (anti-inflammatory) polarization of the macrophage. Furthermore, the effects of NO release on angiogenesis were evaluated using an in vitro tube formation assay and in ovo chicken chorioallantoic membrane (CAM) assay, which revealed that GH/Cu hydrogels could significantly facilitate neovascularization, consistent with the in vivo results. Therefore, we suggested that these hydrogel systems would significantly enhance the wound healing process through the synergistic effects of the hydrogels and NO, and hence could be used as advanced wound dressing materials.


Assuntos
Gelatina , Óxido Nítrico , Humanos , Óxido Nítrico/farmacologia , Gelatina/química , Células Endoteliais , Hidrogéis/química , Cobre/farmacologia , Cicatrização , Anti-Inflamatórios/farmacologia , Movimento Celular , Inflamação
14.
Nanoscale ; 16(4): 1770-1791, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170815

RESUMO

Endogenous gasotransmitter nitric oxide (NO) is a central signalling molecule that modulates wound healing by maintaining homeostasis, collagen formation, wound contraction, anti-microbial action and accelerating tissue regeneration. The optimum delivery of NO using nanoparticles (NPs) is clinically challenging; hence, it is drawing significant attention in wound healing. Herein, a novel polymeric nanoplatform loaded with sodium nitroprusside (SP) NPs was prepared and used for wound healing to obtain the sustained release of NO in therapeutic quantities. SP NPs-induced excellent proliferation (∼300%) of mouse fibroblast (L929) cells was observed. With an increase in the SP NPs dose at 200 µg mL-1 concentration, a 200% upsurge in proliferation was observed along with enhanced migration, and only 17.09 h were required to fill the 50% gap compared to 37.85 h required by the control group. Further, SP NPs showed an insignificant impact on the coagulation cascade, revealing safe wound-healing treatment when tested in isolated rat RBCs. Additionally, SP NPs exhibited excellent angiogenic activity at a 10 µg mL-1 dose. Moreover, the formulated SP nanoformulation is non-irritant, non-toxic, and does not produce any skin sensitivity reaction on the rat's skin. Further, an in vivo wound healing study revealed that within 11 days of treatment with SP nanoformulation, 99.2 ± 1.0% of the wound was closed, while in the control group, only 45.5 ± 3.8% was repaired. These results indicate that owing to sustained NO release, the SP NP and SP nanoformulations are paramount with enormous clinical potential for the regeneration of wound tissues.


Assuntos
Óxido Nítrico , Cicatrização , Camundongos , Ratos , Animais , Óxido Nítrico/farmacologia , Pele , Anti-Inflamatórios , Polímeros , Aminoácidos
15.
Biometals ; 37(1): 185-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37792256

RESUMO

Cr (VI) hampers plant growth and yield by reducing essential nutrient uptake as it competes for phosphate and sulfate transporters. Nitric oxide (NO) and mycorrhization play important roles in mitigating Cr (VI) toxicity. Present study aimed to compare the potential of AMF (Arbuscular mycorrhizal fungi)-Rhizoglomus intraradices and NO (0.25 mM) in alleviating Cr (VI) stress (0, 10 and 20 mg/kg) in two differentially tolerant pigeonpea genotypes (Pusa 2001 and AL 201). Cr (VI) toxicity reduced growth, mycorrhizal colonization, nutrient uptake, and overall productivity by inducing reactive oxygen species (ROS) generation, with AL 201 more sensitive than Pusa 2001. NO and AM enhanced activities of soil enzymes, thereby increasing nutrients availability as well as their uptake, with AM more effective than NO. Both amendments reduced oxidative stress and restricted Cr (VI) uptake by increasing the activities of antioxidant and S- assimilatory enzymes, with Pusa 2001 more responsive than AL 201. NO was relatively more efficient in regulating cysteine-H2S system by increasing the activities of biosynthetic enzymes (ATP-sulfurylase (ATPS), O-acetylserine thiol lyase (OASTL), D-cysteine desulfhydrase (DCD) and L-cysteine desulfhydrase (LCD), while AM significantly increased glutathione reductase (GR), γ-glutamylcysteine synthetase (γ-ECS) enzymes activities and resultant glutathione (GSH), phytochelatins (PCs), and non-protein thiols (NP-SH) synthesis. Moreover, co-application of NO and AM proved to be highly beneficial in negating the toxic effects of Cr (VI) due to functional complementarity between them. Study suggested the combined use of NO and AM as a useful strategy in re-establishing pigeonpea plants growing in Cr (VI)-stressed environments.


Assuntos
Cromo , Micorrizas , Cromo/toxicidade , Cisteína , Óxido Nítrico/farmacologia , Compostos de Sulfidrila , Solo , Cistationina gama-Liase , Glutationa/metabolismo , Genótipo
16.
Biol Reprod ; 110(1): 185-197, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37823770

RESUMO

Obstructive sleep apnea is a recognized risk factor for gestational hypertension, yet the exact mechanism behind this association remains unclear. Here, we tested the hypothesis that intermittent hypoxia, a hallmark of obstructive sleep apnea, induces gestational hypertension through perturbed endothelin-1 signaling. Pregnant Sprague-Dawley rats were subjected to normoxia (control), mild intermittent hypoxia (10.5% O2), or severe intermittent hypoxia (6.5% O2) from gestational days 10-21. Blood pressure was monitored. Plasma was collected and mesenteric arteries were isolated for myograph and protein analyses. The mild and severe intermittent hypoxia groups demonstrated elevated blood pressure, reduced plasma nitrate/nitrite, and unchanged endothelin-1 levels compared to the control group. Western blot analysis revealed decreased expression of endothelin type B receptor and phosphorylated endothelial nitric oxide synthase, while the levels of endothelin type A receptor and total endothelial nitric oxide synthase remained unchanged following intermittent hypoxia exposure. The contractile responses to potassium chloride, phenylephrine, and endothelin-1 were unaffected in endothelium-denuded arteries from mild and severe intermittent hypoxia rats. However, mild and severe intermittent hypoxia rats exhibited impaired endothelium-dependent vasorelaxation responses to endothelin type B receptor agonist IRL-1620 and acetylcholine compared to controls. Endothelium denudation abolished IRL-1620-induced vasorelaxation, supporting the involvement of endothelium in endothelin type B receptor-mediated relaxation. Treatment with IRL-1620 during intermittent hypoxia exposure significantly attenuated intermittent hypoxia-induced hypertension in pregnant rats. This was associated with elevated circulating nitrate/nitrite levels, enhanced endothelin type B receptor expression, increased endothelial nitric oxide synthase activation, and improved vasodilation responses. Our data suggested that intermittent hypoxia exposure during gestation increases blood pressure in pregnant rats by suppressing endothelin type B receptor-mediated signaling, providing a molecular mechanism linking intermittent hypoxia and gestational hypertension.


Assuntos
Hipertensão Induzida pela Gravidez , Apneia Obstrutiva do Sono , Humanos , Gravidez , Feminino , Ratos , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Sprague-Dawley , Endotelina-1/metabolismo , Endotelina-1/farmacologia , Hipertensão Induzida pela Gravidez/etiologia , Hipertensão Induzida pela Gravidez/metabolismo , Nitratos/metabolismo , Nitratos/farmacologia , Nitritos/metabolismo , Nitritos/farmacologia , Vasodilatação , Endotelinas/metabolismo , Endotelinas/farmacologia , Hipóxia/metabolismo , Receptor de Endotelina A/metabolismo , Artérias Mesentéricas , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Endotélio Vascular
17.
Nitric Oxide ; 142: 26-37, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37989410

RESUMO

Nitric oxide (NO) is a versatile signaling molecule that plays a crucial role in regulating postharvest fruit quality. The utilization of NO donors to elevate endogenous NO levels and induce NO-mediated responses represents a promising strategy for extending fruit shelf-life after harvest. However, the effectiveness of NO treatment is influenced by various factors, including formulation and application methods. In this review, we investigate the impact of NO supply on different fruits, aiming to prolong postharvest shelf-life and enhance fruit quality. Furthermore, we delve into the underlying mechanisms of NO action, particularly its interactions with ethylene and reactive oxygen species (ROS). Excitingly, we also highlight the emerging field of nanotechnology in postharvest applications, discussing the use of nanoparticles as a novel approach for achieving sustained release of NO and enhancing its effects. By harnessing the potential of nanotechnology, our review is a starting point to help identify gaps and future directions in this important, emerging field.


Assuntos
Frutas , Óxido Nítrico , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Transdução de Sinais , Nanotecnologia
18.
Int J Biol Macromol ; 254(Pt 1): 127806, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918593

RESUMO

Bacterial infection and chronic inflammation are two major risks in diabetic wound healing, which increase patient mortality. In this study, a multifunctional sprayable nanogel (Ag-G@CS) based on chitosan has been developed to synergistically inhibit bacterial infection, eradicate biofilm, and relieve inflammation of diabetic wounds. The nanogel is successfully crafted by encapsulating with a nitric oxide (NO) donor and performing in-situ reduction of silver nanoparticles (Ag). The released NO enhances the antibacterial efficacy of Ag, nearly achieving complete eradication of biofilms in vitro. Upon application on both normal or diabetic chronic wounds, the combination effects of released NO and Ag offer a notable antibacterial effect. Furthermore, after bacteria inhibition and biofilm eradication, the NO released by the nanogel orchestrates a transformation of M1 macrophages into M2 macrophages, significantly reducing tumor necrosis factor α (TNF-α) release and relieving inflammation. Remarkably, the released NO also promotes M2a to M2c macrophages, thereby facilitating tissue remodeling in chronic wounds. More importantly, it upregulates the expression of vascular endothelial growth factor (VEGF), further accelerating the wound healing process. Collectively, the formed sprayable nanogel exhibits excellent inhibition of bacterial infections and biofilms, and promotes chronic wound healing via inflammation resolution, which has excellent potential for clinical use in the future.


Assuntos
Infecções Bacterianas , Quitosana , Diabetes Mellitus Experimental , Nanopartículas Metálicas , Animais , Humanos , Quitosana/farmacologia , Óxido Nítrico/farmacologia , Nanogéis , Fator A de Crescimento do Endotélio Vascular/farmacologia , Diabetes Mellitus Experimental/metabolismo , Prata/farmacologia , Cicatrização , Antibacterianos/farmacologia , Macrófagos , Bactérias , Biofilmes , Inflamação
19.
Nitric Oxide ; 143: 1-8, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096948

RESUMO

6-Nitrodopamine (6-ND) is released from rat and human vas deferens and is considered a major mediator of both tissues contractility. The contractions induced by 6-ND are selectively blocked by both tricyclic antidepressants and α1-adrenoceptor antagonists. Endothelial nitric oxide synthase (eNOS) is the major isoform responsible for 6-ND release in mouse isolated heart, however the origin of 6-ND in the vas deferens is unknown. Here it was investigated by LC-MS/MS the basal release of 6-ND from isolated vas deferens obtained from control, eNOS-/-, nNOS-/-, and iNOS-/- mice. In addition, it was evaluated in vitro vas deferens contractility following electric field stimulation (EFS). Basal release of 6-ND was significantly reduced in nNOS-/- mice compared to control mice, but not decreased when the vas deferens were obtained from either eNOS-/- or iNOS-/- mice. Pre-incubation of the vas deferens with tetrodotoxin (1 µM) significantly reduced the basal release of 6-ND from control, eNOS-/-, and iNOS-/- mice but had no effect on the basal release of 6-ND from nNOS-/- mice. EFS-induced frequency-dependent contractions of the vas deferens, which were significantly reduced when the tissues obtained from control, eNOS-/- and iNOS-/- mice, were pre-incubated with l-NAME, but unaltered when the vas deferens was obtained from nNOS-/- mice. In addition, the EFS-induced contractions were significantly smaller when the vas deferens were obtained from nNOS-/- mice. The results clearly demonstrate that nNOS is the main NO isoform responsible for 6-ND release in mouse vas deferens and reinforces the concept of 6-ND as a major modulator of vas deferens contractility.


Assuntos
Dopamina , Norepinefrina , Ducto Deferente , Animais , Humanos , Masculino , Camundongos , Ratos , Cromatografia Líquida , Dopamina/análogos & derivados , Contração Muscular , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo I , Norepinefrina/farmacologia , Espectrometria de Massas em Tandem , Ducto Deferente/fisiologia
20.
ACS Appl Mater Interfaces ; 16(1): 318-331, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38156407

RESUMO

Vascular complications caused by diabetes impair the activities of endothelial nitric oxide synthase (eNOS) and cystathionine γ-lyase (CSE), resulting in decreased physiological levels of nitric oxide (NO) and hydrogen sulfide (H2S). The low bioavailability of NO and H2S hinders the endothelialization of vascular grafts. In this study, endothelium-mimicking bilayer vascular grafts were designed with spatiotemporally controlled dual releases of NO and H2S for in situ endothelialization and angiogenesis. Keratin-based H2S donor was synthesized and electrospun with poly(l-lactide-co-ε-caprolactone) (PLCL) as the outer layer of the graft to release H2S. Hyaluronic acid, one of the major glycosaminoglycans in endothelial glycocalyx, was complexed with Cu ions as the inner layer to mimic glutathione peroxidase (GPx) and maintain long-term physiological NO flux. The synergistic effects of NO and H2S of bilayer grafts selectively promoted the regeneration and migration of human umbilical vascular endothelial cells (HUVECs), while inhibiting the overproliferation of human umbilical artery smooth muscle cells (HUASMCs). Bilayer grafts could effectively prevent vascular calcification, reduce inflammation, and alleviate endothelial dysfunction. The in vivo study in a rat abdominal aorta replacement model for 1 month showed that the graft had a good patency rate and had potential for vascular remodeling in situ.


Assuntos
Células Endoteliais , Sulfeto de Hidrogênio , Ratos , Humanos , Animais , Óxido Nítrico/farmacologia , Sulfeto de Hidrogênio/farmacologia , Prótese Vascular , Endotélio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...